

Packmaker

Packmaker is a command line tool used to build Modded Minecraft modpacks on
Linux systems. It can take a yaml-based description of a pack and generate
a package suitable for use in the following formats:

	Curseforge - A curseforge package suitable for uploading directly to the
curseforge.com webiste, or importing into a curseforge compatible minecraft
launcher like PolyMC or the Curseforge Client.

	Routhio - A package format used by the minecraft.routh.io community and the
routh.io minecraft launcher.

	Local client - A local minecraft client installation, suitable for standalone
games. Packmaker can even launch your modded minecraft installation in
offline mode itself. Great for testing your modpack during development.

	Server - A minecraft server installation, suitable for use by clients to
connect with and play together.

If you’re new to packmaker, begin with the Getting Started guide. That
guide walks you through installing packmaker, setting it up how you like it,
and starting to build your first modpack.

Then you can get a more detailed look at packmaker’s features in the
Command-Line Interface and Configuration references.

If you still need help, you can drop by the #packmaker channel on our
Discord server [https://discord.gg/TwJz9rZ], or file a bug [https://gitlab.routh.io/minecraft/tools/packmaker/issues] in the issue tracker. Please let us know
where you think this documentation can be improved.

And if you’re really ambitous, checkout the code [https://gitlab.routh.io/minecraft/tools/packmaker] and help us improve
packmaker for you and everyone.

Contents

	Guides
	Getting Started

	Reference
	Packmaker Definition Files

	Command-Line Interface

	Configuration

	FAQ
	How do I…

	Why does packmaker…

Guides

This section contains a couple of walkthroughs that will help you get familiar
with packmaker. If you’re new to packmaker, you’ll want to begin with the Getting Started
guide.

	Getting Started

Getting Started

Welcome to packmaker [https://gitlab.routh.io/minecraft/tools/packmaker/]! This guide will help you begin using it to make Modded Minecraft modpacks.

Installing

You will need Python.
Packmaker works on Python 3.4 [https://www.python.org/download/] and later.

If you have pip [https://pip.pypa.io], just say pip3 install packmaker (or pip3 install --user
packmaker if you run into permissions problems).

To install without pip, download packmaker from its PyPI page [https://pypi.org/project/packmaker#downloads] and run python
setup.py install in the directory therein.

The best way to upgrade packmaker to a new version is by running pip3 install -U
packmaker.

Configuring

Packmaker has a config file that you will need to provide. Packmaker will look
in the following locations on the filesystem for this config file, in this order.
The first file found is the one it uses:

	./packmaker.conf, in the current working directory.

	${HOME}/packmaker.conf, in your home directory.

	${HOME}/.config/packmaker.conf, the .config subdirectory of your home directory.

	/usr/local/etc/packmaker.conf

	/etc/packmaker.conf

Currently, this configuration file only contains some required parameters for
dealing with the Curseforge API and some optional locations for where to
store downloaded and built artifacts.

[curseforge]
authentication_token = <curseforge authentication token>
moddb_filename = curseforge.db

[locations]
build = ./build
cache = ./build/cache
release = ./build/release

Packmaker needs to call the Curseforge API to retrieve mod information, and this api
requires authentication. A curseforge.com [https://docs.curseforge.com/] account is required and your authentication
token can be generated using the Curseforge Console [https://console.curseforge.com/#/api-keys]. Copy the generated token into
your config file.

Packmaker can download the enitre list of minecraft mods and generate a local database
of information to be used later when building modpacks. The file this database is
contained in also needs to be specified.

The [locations] section is optional but allows you to specify the locations where
the files packmaker downloads and the artifacts it generates will be kept on your
filesystem.

The build location is where packmaker puts its generated artifacts when
building a pack. If not defined, the default build location is a build
subdirectory of the current working directory.

The cache location is where packmaker places the files its downloads during the
build process. Minecraft files, forge libraries, mods, etc are all downloaded and
kept in this cache location. Packmaker tries to optimize its downloading and checks
for files in this cache location before attempting to download a file so that it
does not have to download the same file twice. If not defined, the default cache
location is a cache subdirectory in the build location.

Finally, the release location is where packmaker will put the final artifacts
generated by the build process. For example, the zip file you will want to upload
to curseforge is placed here. If not defined, the default release location is
a release subdirectory in the build location.

CurseforgeDB

With a configuration file in place, you can now generate a local database of information
on minecraft mods. Run the following command to generate it:

packmaker updatedb

This command will use the curseforge api to retrieve the list of all available mods. As
there are literally thousands of available mods, this command may take a few minutes to
complete.

The Example Modpack

Packmaker modpacks are defined in a YAML file. By default, packmaker will look packmaker.yml
in the current directory, although you can use any file name you like when you specify it on
the packmaker command line.

Here is a short, quick example packmaker definition file:

name: examplepack
title: Example Pack
version: 1.0.0

authors:
 - mcrewson

minecraft: 1.12.2
forge: 14.23.5.2838

mods:
 - jei:
 - journeymap:
 - tinkers-construct:
 - the-one-probe:

files:
 - location: src/

Fields should be fairly obvious. The Packmaker Definition Files explains all of these options
(and more) in details. But in summary, this example modpack is defined as follows:

	The modpack filename(s) will be a combination of the name and version field. For example,
examplepack-1.0.0.zip

	The modpack metadata will include title and authors fields.

	This pack is for version 1.12.2 of Minecraft and version 14.23.5.2838 of Forge

	Packmaker will include the following mods in the pack:

	Jei, Just Enough Items

	Journeymap

	Mantle (a dependent library mod)

	Tinker’s Construct

	The One Probe

	Packmaker will include all of the content of the src subdirectory in the modpack

With the modpack defined in the yaml file, next it needs to be locked, and then built.

Locking a pack, with the packmaker lock command, will resolve all of the information
in the yaml file into actionable items. Primarily, mods will be resolved to be downloadable
urls. A packmaker.lock file will be generated with all of the resolved information in
it, and subsequent build steps will reference this lock file.

During the lock process, packmaker will also attempt to resolve any mod dependencies. If
a mod defined in the pack has a dependency on another mod that is not also listed in the
pack definition, packmaker will automatically resolve and add the dependent mod to the
lock file for you. This way you do not need to worry about defining all of the dependent
library mods often required in a pack. Packmaker can figure this out for you.

After the pack is locked, you can build it into an installable modpack, suitable for running
in your launcher, or uploading to the Curseforge website. Packmaker supports and is capable
of building the pack into a number of different formats.

To build a curseforge compatible pack, run packmaker build-curseforge. You can upload the
generate zip file (build/release/examplepack-1.0.0.zip) to curseforge, or import it into
the Cureforge client or PolyMC client directly.

To build a server, suitable for multiplayer play, run packmaker build-server. You’ll find
the server files in build/server/. There is even a simple start.sh script you can use
to run the server.

A local single player version of the pack can also be generated with packmaker build-local,
found in build/local/. For pack testing purposes, there is even a convienent way to
launch the pack in offline mode, packmaker launch.

Reference

This section contains reference materials for various parts of packmaker. To get
started with packmaker as a new user, though, you may want to read the
Getting Started guide first.

	Packmaker Definition Files
	Introduction

	Metadata
	Environment Variables in Metadata

	Release Types

	Mod Definitions

	Resourcepack Definitions

	Files

	Routhio

	Command-Line Interface
	Commands
	build-curseforge

	build-local

	build-routhio

	build-server

	convert

	findupdates

	info

	launch

	lock

	modsinfo

	resourcepacksinfo

	search

	updatedb

	help

	Global Flags

	Configuration
	Curseforge options
	authentication_token

	ignore_mods

	ignore_resourcepacks

	moddb_filename

	Launch options
	java_arguments

	java_binary

	java_memory

	Locations options
	build

	cache

	release

	Configuration Locations
	Linux or Unix-like systems

	Windows

	Mac OS X

	Example

Packmaker Definition Files

Minecraft modpacks built using Packmaker are defined in a YAML file, typically
called packmaker.yml 1.

The packmaker.yml file defines all of the metadata about a modpack, title,
version, authors, etc, and all of the details about what is needed to be
installed in a Minecraft instance to create the modpack. This include things
like what version of Minecraft, what version of Forge, and any mods and/or
resourcepacks to add to the instance.

There is an simple example of a packmaker.yml for a simple modpack in the
packmaker git repository [https://gitlab.routh.io/minecraft/tools/packmaker/-/tree/master/example].

	1

	packmaker.yml is the default name used for the this yaml file, and
this reference document assumes the default filename is used, but you can
use any filename you like, as long as you provide it on the command line.

Introduction

Packmaker definition files are written in YAML syntax.

YAML is used because it is easier for humans to read and write than other common data formats like
XML or JSON.

The definition file can be broken down into a number of different sections:

	metadata

	All the pack metadata, including name, version, author, etc. Most of the metadata is
required to properly define a modpack.

	mods

	The list of mods to be installed in the modpack. Mods are optional, and if this section is
omitted, no mods will be installed. (But what would a modpack be without mods?)

	resourcepacks

	The list of resourcepacks to be installed in the modpack. Like mods, resourcepacks are
optional, and if not are needed, this section can be omitted.

	files

	The list of additional files to be installed in the modpack. Again, files are optional and
can this section can be omitted if there are no files to install.

The following example packmaker definition file defines every single element, and every parameter
for mods, resourcepacks, and files at least once.

name: examplepack
title: Example ModPack
version: 1.0.0
author:
 - mcrewson
 - crouth

minecraft: 1.12.2
forge: 14.23.5.2854

releasetypes:
 mods:
 - beta
 - release
 resourcepacks:
 - alpha
 - beta
 - release

mods:
 - jei:
 - journeymap:
 curseforgeid: 32274
 release: latest
 - the-one-probe
 ingoreddependencies:
 - mantle
 - tinkers-construct:
 release: TConstruct-1.12.2-2.13.0.183.jar
 clientonly: false
 serveronly: false
 optional: false
 recommendation: starred
 selected: false

resourcepacks:
 - faithful-x32:
 release: Faithful 1.15.2-r1
 optional: false
 recommendation: starred
 selected: false

files:
 - location: src
 clientonly: false
 serveronly: false

routhio:
 html:
 - location: html
 launch:
 flags:
 - "-Dfml.ignoreInvalidMinecraftCertificates=true -XX:+UseG1GC -XX:UseSSE=3"
...

Metadata

Modpack metadata is needed to properly identify the modpack

	name

	The name of the modpack. Currently used as part of the final filename for the released modpack file.
Typically this should be short and simple, with no spaces or punctuation in the name, for better
filenames.

Required.

	title

	The title of the modpack. This should be the full title of the pack. For example, the title is
what is used in a curseforge manifest file, so when you import your into the curseforge client or polymc, this
is the default name it will appear as.

Required.

	version

	The version of the modpack. Can be any string, but would recommend your follow a consistent versioning
pattern (semantic versioning [https://semver.org/] is a good example). Incrementing the version of a pack is how launchers are
able to detect and upgrade a modpack.

Version is also used in building the final filename for the released modpack file.

Required.

	authors

	A list of names your want to credit with the creaton of the modpack. If only one name is needed, you
can specify this as a string, rather than a list.

Some modpack formats, the curseforge format in particular, do not support more than one author in
their metadata. When building modpacks in those formats, packmaker only uses the first name in
the list.

Required.

	minecraft

	This is the version of minecraft this pack is being built for. Any valid version string that
Mojang has defined for Minecraft should be valid here, although it is recommended you use some of the
more common versions:

	1.7.10

	1.10.2

	1.11.2

	1.12.2

	1.13.2

	1.14.4

	1.15.2

This field is required.

	forge

	The version of the Forge modloader that the pack is being built for. Any valid version string
that Forge has defined should be valid here, although it is recommended you use the latest for recommended
version as defined by Forge. In fact, if you use the value ‘recommended’ or ‘latest’ for this version,
packmaker will calculate the actual version based on what minecraftforge.net has defined for
the version of minecraft you are using.

This is an optional field. If not defined, your modpack will not include Forge, most likely
resulting in a vanilla minecraft pack, one with no mods loaded in it.

The forge and fabric modloaders should not both be defined in the pack definition. That would be crazy.

	fabric

	The version of the Fabric modloader that the pack is being built for. Any valid version string
the Fabirc has defined should be valid here, although it is recommended you use the latest version as
defined by Fabric. In fact, if you use the value ‘latest’ for this version, packmaker will calculate
the actual version based on what fabricmc.net has defined for the version of minecraft you are
using.

This is an optional field. If not defined, the Fabric modloader will not be included, most likely
resulting in a vanilla minecraft pack, or at least one that cannot load Fabric mods.

The forge and fabric modloaders should not both be defined in the pack definition. That leads to
madness.

Environment Variables in Metadata

Packdef metadata can be specified using environment variable syntax, and packmaker will use the
values of the environment variable when building the pack. For example:

name: examplepack
title: Example ModPack
version: ${VERSION:-development}

The version of this pack will be set at build time to the value of the VERSION environment
variable. If the VERSION environment variable is not defined, the value development will
be used a fallback.

Environment variables are only valid for the metadata items in the packdef files. They will not
be interpolated in other parts of the packdef such as the mods or resourcepacks lists.

Release Types

Release types are a way to control the versions or releases of the mods and resourcepacks installed
in the pack. Every version of a mod or resourcepack in Curseforge is classified by a release type.
While the meaning of these release types can be a little vague, and ultimately is up to the mod
authors, the three available release types typically mean the following:

	apha : An alpha release is considered the least stable version of a mod. Testing may have not been
completed and there may be game breaking bugs.

	beta : A beta release is the middle ground, more stable than alpha, less than release. More testing
has been done, but there may be some smaller issues still to be worked out.

	release : The most stable of the release types, a “released” mod or resourcepack is has been deemed
by the mod author as ready for everyone to use. Testing and most bugs should be worked out.

Typically, although not universally, and not guaranteed, a mod author will make many alpha releases of his
project while developing his code. When he decides that it is ready for use by a larger audience, he may
make a beta release or two, which fixes the bugs found be his alpha testers. Eventually, once the mod
author is happy with the testing and is certain is mod or resourcepack is ready, he releases a final “release”
version of his project.

As the modpack author, you can specify which types of releases you want to include in your pack. If you
specify nothing, packmaker will find and include the most recent (the “latest”) version of the mods and
resourcepacks specified in your pack definition file, regardless of their release type. If you do not
want to include “alpha” and/or “beta” versions in your modpack, you can control that by specifying which
release types are acceptable.

The releasetypes element in the pack definition can control this for all mods and resourcepacks in
your pack:

releasetypes:
 mods:
 - alpha
 - beta
 - release
 resourcepacks:
 - alpha
 - beta
 - release

The allowed release types for mods and resourcepacks are specified separately (so you could allow “alpha” resourcepacks
but not “alpha” mods). For each, you can specify a list of allowed release types. This list will be used for
ALL of the mods or resourcepacks. You can override this default releasetype value for individual mod and resourcepacks
by specifying a release parameter in the mod or resourcepack definition (see below).

It is allowed, although maybe a little odd, to specify unusual combinations of releasetypes, and packmaker
will respect it. For example, your can specify that you want “alpha” and “release”, but not “beta” types,
and packmaker will install the latest version of a mod that is either an alpha or a release, but not a beta
(even if there is a newer version of the mod that was releases as a beta).

Mod Definitions

mods is a list of minecraft mod definitions. Each definition requires the slug name of the mod,
as found on the curseforge.com [https://www.curseforge.com/minecraft/mc-mods] site.

You can find the slug name of a mod using packmaker’s search function. Search results will contain
both the full name of a mod and the slug name.

The slug name of a mod on curseforge can also be found in the mod’s address on the site. For example,
the curseforge page for the Tinker’s Construct [https://www.curseforge.com/minecraft/mc-mods/tinkers-construct] mod is:

https://www.curseforge.com/minecraft/mc-mods/tinkers-construct

The last part of the address, “tinkers-construct”, is the slug name for this mod.

Each mod listed in this packmaker.yml file can be specified as either a string value, if no additional
parameters are required for the mod, or as a dictionary, where you can supply additional parameters to
control the specific version of the mod and other aspects of it within the modpack.

All of these parameters are optional.

	curseforgeid

	An integer value, specifying the exact mod to be installed, based on its Curseforge ID
in the curseforge api. When this parameter is used, packmaker will not search for the mod in
curseforge using the slug name specified, but instead assume the id specified here is exactly the one
wanted, and no further checks will be done to verify it.

This can be useful in some situations, where the curseforge search api is not returning the correct
mod or cannot find it at all, but should be used as a last resort it will circumvent some of
packmaker’s safety checks. For example, it will not ensure the mod is compatible with the chosen
modloader or minecraft version.

Optional, and undefined by default. Meaning, the slug name of the mod specified will be used to
find the requested mod in curseforge.

	release

	The specific release of the mod to be installed into the modpack. If not defined, packmaker
will default to using the latest version of the mod available for the version of minecraft that the
pack is built for.

The release parameter must contain either the entire filename of the version of the mod desired, usually
as specified on the curseforge site for the mod, or the curseforge id of the release. The curseforge id
of the release can be useful if the curseforge search api is not find the exact mod you want.

Alternatively, one of the following “magic” values can be used to have packmaker figure out which version
be installed, based on the release types specified by the curseforge api:

	latest-alpha : install the latest version of the mod with a release type of “alpha”, “beta”, or “released”

	latest-beta : install the latest version of the mod with a release type “beta” or “released”. “Alpha” releases will be ignored.

	latest-release : install the latest version of the mod with a release type of “released”. “Alpha” and “releases” will be ignored.

	latest : install the latest version of the mod with release type as specified in releasetypes packdef element.

Using these “magic” release values overrides the releasetypes specified globally (see above)
for this mod.

Optional, and defaults to latest, meaning the version of the mod installed will be the latest
available, as allowed by the packmaker.conf configuration file.

	url

	To include a mod that cannot be found on Curseforge in a modpack, there are two options. You can
include it directly in the pack as a file (see below), which works great but will greatly increase
the size of your modpack and potentially create a licensing problem from mod owners that prefer their
mods only be installed from their site. The alternative is to specify a url for the mod.

If the url parameter is used, it must be a complete and accurate download url for the mod jar file.
Packmaker will then include only this url in your modpack (except for curseforge modpacks, see the next
paragraph for that caveat), and a client launcher will be able to download the mod for the player
directly from this url. This means the modpack doesn’t need to contain the large mod jar file, and
the mod owner gets the download directly from their site.

Caveat, Curseforge modpacks do not have a concept of downloading a mod from just a url, so packmaker
will download and include the actual mod jar file into your curseforge modpack when building it. So the
mod can still be defined in the packdef file with this url parameter, and packmaker will build it properly
for all pack types.

It should be noted that when the url parameter is used, all release and version checking that
packmaker normally does to ensure a mod is compatible with your modloader and minecraft is ignored.

	clientonly

	A boolean value, indicating whether this mod is specific to the minecraft client. If true,
packmaker will not install this mod into any server builds.

Optional, and defaults to false if not specified, meaning the mod will be installed in both client
and server builds.

	serveronly

	A boolean value, indicating whether this mod is specific to the minecraft server. If true,
packmaker will only install this mod in server builds.

Optional, and default to false if not specified, meaning the mod will be installed in both client
and server builds.

	ignoreddependencies

	Either the string “all”, or a list of mods. This parameter specifies mods
to be ignored when trying to resolve the dependencies of a mod. If the value of this parameter
is all, no mod dependency resolution will be done for this mod. Otherwise if a mod’s
dependency is part of this list, it will not be added to the set of mods in the pack as part of
the mod dependency resolution process.

Optional, and defaults to an empty list, meaning all dependent mods will be added to the pack
automatically.

	optional

	An optional parameter, only used for routhio builds. This will mark the mod as optional,
and the routhio launcher will present it as an optional mod that can be installed but is not
required to launch the modpack.

When building servers and other types of modpacks, for example curseforge modpacks, packmaker
will ignore this parameter.

	recommendation

	An optional parameter, only used for routhio builds. This will mark an optional
mod as recommended, marking the mod in the launcher as a recommended optional mod or an optional
mod to avoid. Should have the value starred or avoid. Any other value will not make sense
to the routhio launcher and will cause the mod to be ignored. Not including this parameter
on an optional mod will make the launcher neither recommend to install nor avoid it.

When building servers and other types of modpacks, for example curseforge modpacks, packmaker
will ignore this parameter.

	selected

	An optional parameter, only used for routhio builds. This will mark an optional
mod as selected, making the optonal mod installed by default, unless the user explicitly
chooses not to. Should have the value a boolean value, true or false.

When building servers and other types of modpacks, for example curseforge modpacks, packmaker
will ignore this parameter.

Resourcepack Definitions

Resourcepacks are always minecraft client only elements. They will be
ignored when building servers for the pack. So there is no need for
clientonly or serveronly parameters for a resourcepack.

	curseforgeid

	An integer value, specifying the exact resourcepack to be installed, based on its Curseforge ID
in the curseforge api. When this parameter is used, packmaker will not search for the resourcepack in
curseforge using the slug name specified, but instead assume the id specified here is exactly the one
wanted, and no further checks will be done to verify it.

This can be useful in some situations, where the curseforge search api is not returning the correct
resourcepack or cannot find it at all, but should be used as a last resort it will circumvent some of
packmaker’s safety checks. For example, it will not ensure the resourcepack is compatible with the chosen
modloader or minecraft version.

Optional, and undefined by default. Meaning, the slug name of the resourcepack specified will be used to
find the requested resourcepack in curseforge.

	release

	The specific release of the resourcepack to be installed into the modpack. If not defined,
packmaker will default to using the latest version of the resoourcepack available for the version
of minecraft that the pack is built for.

The release parameter must contain either the entire filename of the version of the resourcepack desired, usually
as specified on the curseforge site for the resourcepack, or the curseforge id of the release. The curseforge id
of the release can be useful if the curseforge search api is not find the exact resourcepack you want.

Alternatively, one of the following “magic” values can be used to have packmaker figure out which version
be installed, based on the release types specified by the curseforge api:

	latest-alpha : install the latest version of the resourcepack with a release type of “alpha”, “beta”, or “released”

	latest-beta : install the latest version of the resourcepack with a release type “beta” or “released”. “Alpha” releases will be ignored.

	latest-release : install the latest version of the resourcepack with a release type of “released”. “Alpha” and “releases” will be ignored.

	latest : install the latest version of the resourcepack with release type as specified in releasetypes packdef element.

Using these “magic” release values overrides the releasetypes specified globally (see above)
for this resourcepack.

Optional, and defaults to latest, meaning the version of the resourcepack installed will be the latest
available, as allowed by the packmaker.conf configuration file.

The release parameter must contain the entire filename of the version of the resourcepack
desired, usually as specified on the curseforge site for the resourcepack.

The value latest can also be used to explicitly specify that the latest version be installed.

	url

	To include a resourcepack that cannot be found on Curseforge in a modpack, there are two options. You can
include it directly in the pack as a file (see below), which works great but will greatly increase
the size of your modpack and potentially create a licensing problem from resourcepack owners that prefer their
resourcepack only be installed from their own site. The alternative is to specify a url for the resourcepack.

If the url parameter is used, it must be a complete and accurate download url for the resourcepack zip file.
Packmaker will then include only this url in your modpack (except for curseforge modpacks, see the next
paragraph for that caveat), and a client launcher will be able to download the resourcepack for the player
directly from this url. This means the modpack doesn’t need to contain the large resourcepack zip file,
and the resourcepack owner gets the download directly from their site.

Caveat, Curseforge modpacks do not have a concept of downloading a resourcepack from just a url, so packmaker
will download and include the actual resourcepack zip file into your curseforge modpack when building it. So the
resourcepack can still be defined in the packdef file with this url parameter, and packmaker will build it properly
for all pack types.

It should be noted that when the url parameter is used, all release and version checking that
packmaker normally does to ensure a resourcepack is compatible with your modloader and minecraft is ignored.

	optional

	An optional parameter, only used for routhio builds. This will mark the resourcepack
as optional, and the routhio launcher will present it as an optional resourcepack that can be
installed but is not required to launch the modpack.

When building other types of modpacks, for example curseforge modpacks, packmaker will ignore this
parameter.

	recommendation

	An optional parameter, only used for routhio builds. This will mark an optional
resourcepack as recommended, marking the resourcepack in the launcher as a recommended optional
resourcepack or an optional resourcepack to avoid. Should have the value starred or avoid.
Any other value will not make sense to the routhio launcher and will cause the resourcepack to
be ignored. Not including this parameter on an optional resourcepack will make the launcher
neither recommend to install nor avoid it.

When building other types of modpacks, for example curseforge modpacks, packmaker will ignore this
parameter.

	selected

	An optional parameter, only used for routhio builds. This will mark an optional
resourcepack as selected, making the optonal resourcepack installed by default, unless the user explicitly
chooses not to. Should have the value a boolean value, true or false.

When building other types of modpacks, for example curseforge modpacks, packmaker will ignore this
parameter.

Files

The files section of the packmaker.yml file specifies the local files to be included into the
modpack. Typically these would be an additional configurations, scripts, resources, etc that
you want to add to the minecraft install when it is installed.

This section is a list of file locations, typically subfolders or directories within your packmaker
project. Each location in the list should be unique and not overlap another location, as all
locations will be combined in the final poduct.

The contents of each location folder will be copied into the minecraft folder of the built instance,
with no alterations or attempt to preserve what is already stored in the destination, so be
care not to accidently overwrite any files that may have already been installed by minecraft
itself or mod installations.

A typical use for multiple file locations is to specify some files be installed only on client
builds, and other only installed on server builds. For example:

files:
 - location: src-all
 - location: src-client
 clientonly: true
 - location: src-server
 serveronly: true
 - location: templates
 template: true

Each location in the files list can have the following parameters.

	location

	The location, relative to the packmaker.yml file itself, of the local files to
be included in the modpack.

If this location does not physically exist when building the modpack, a warning is printing,
by this location will be ignored.

	clientonly

	An optional boolean flag (true or false), indicating that this location of files
should only be included with client builds.

Defaults to false, meaning the location will be included in both client and server build,
unless the corresponding serveronly parameter is specified.

	serveronly

	An optional boolean flag (true or false), indicating that this location of files
should only be included with server builds.

Defaults to false, meaning the location will be included in both client and server build,
unless the corresponding clientonly parameter is specified.

	template

	An optional boolean flag (true or false), indicating that this location of files
are Jinja2 templates. Rather than simply copying files from this location to the instance
destination, Packmaker will load and render these files using the Jinja2 templating system.
The packdef metadata (name, title, version, minecraft_version, etc) can be used as template
variables inside each template file however you want.

This can be useful for rendering pack data, for example the pack title and version, into
mod configuration files, such as custom main menu text.

Defaults to false, meaning the files at this location are not templates, but plain files
that will be copied to an instance with no modifications.

Routhio

The routhio section of the packmaker.yml file is specific to only one type of modpack build,
a modpack for the routhio launcher. All other build types will ignore this section.

This section includes the following elements:

	html

	A location of additional html files, typically a local folder with the project, that will
be displayed within the launcher when a user selected this specific modpack.

	launch

	Additional options the launcher will use when launching a minecraft instance. Currently,
the only launcher option that can be specified here is flags, which is used to provide
additional java command line arguments on the minecraft process.

Command-Line Interface

packmaker is the command-line interface to Packmaker.

You invoke packmaker by specifying a command, like so:

packmaker COMMAND [ARGS...]

The rest of this document describes the available
commands. If you ever need a quick list of what’s available, just
type packmaker -h or packmaker help COMMAND for help with a specific
command.

Commands

Here are the built-in commands available in packmaker:

	build-curseforge

	build-local

	build-routhio

	build-server

	convert

	findupdates

	info

	launch

	lock

	modsinfo

	resourcepacksinfo

	search

	updatedb

	help

Also be sure to see the global flags.

build-curseforge

packmaker build-curseforge [-h] [--build-dir BUILD_DIR]
 [--release-dir RELEASE_DIR]
 [--cache-dir CACHE_DIR]
 [--release-format {zip,tgz}]
 [lockfile [lockfile ...]]

Build a curseforge compatible modpack.

positional arguments:
 lockfile modpack lock file

optional arguments:
 -h, --help show this help message and exit
 --build-dir BUILD_DIR, -b BUILD_DIR
 base directory for build artifacts
 --release-dir RELEASE_DIR, -r RELEASE_DIR
 base directory for release artifacts
 --cache-dir CACHE_DIR
 base directory for cached artifacts
 --release-format {zip,tgz}
 archive format for release package

Describe cmd here

Optional command flags:

build-local

packmaker build-local [-h] [--build-dir BUILD_DIR]
 [--release-dir RELEASE_DIR]
 [--cache-dir CACHE_DIR]
 [--release-format {zip,tgz}]
 [lockfile [lockfile ...]]

Build a local installation

positional arguments:
 lockfile modpack lock file

optional arguments:
 -h, --help show this help message and exit
 --build-dir BUILD_DIR, -b BUILD_DIR
 base directory for build artifacts
 --release-dir RELEASE_DIR, -r RELEASE_DIR
 base directory for release artifacts
 --cache-dir CACHE_DIR
 base directory for cached artifacts
 --release-format {zip,tgz}
 archive format for release package

Describe cmd here

Optional command flags:

build-routhio

packmaker build-routhio [-h] [--build-dir BUILD_DIR]
 [--release-dir RELEASE_DIR]
 [--cache-dir CACHE_DIR]
 [--release-format {zip,tgz}]
 [lockfile [lockfile ...]]

Build a Routh.io compatible modpack.

positional arguments:
 lockfile modpack lock file

optional arguments:
 -h, --help show this help message and exit
 --build-dir BUILD_DIR, -b BUILD_DIR
 base directory for build artifacts
 --release-dir RELEASE_DIR, -r RELEASE_DIR
 base directory for release artifacts
 --cache-dir CACHE_DIR
 base directory for cached artifacts
 --release-format {zip,tgz}
 archive format for release package

Describe cmd here

Optional command flags:

build-server

packmaker build-server [-h] [--build-dir BUILD_DIR]
 [--release-dir RELEASE_DIR]
 [--cache-dir CACHE_DIR]
 [--release-format {zip,tgz}]
 [lockfile [lockfile ...]]

Build a server modpack.

positional arguments:
 lockfile modpack lock file

optional arguments:
 -h, --help show this help message and exit
 --build-dir BUILD_DIR, -b BUILD_DIR
 base directory for build artifacts
 --release-dir RELEASE_DIR, -r RELEASE_DIR
 base directory for release artifacts
 --cache-dir CACHE_DIR
 base directory for cached artifacts
 --release-format {zip,tgz}
 archive format for release package

Describe cmd here

Optional command flags:

convert

packmaker convert [-h] manifest [packdef]

Convert a curseforge modpack manifest json file to a packmaker yaml packdef file

positional arguments:
 manifest manifest json file
 packdef output packdef file

optional arguments:
 -h, --help show this help message and exit

Describe cmd here

Optional command flags:

findupdates

packmaker findupdates [-h] [-f {csv,json,table,value,yaml}] [-c COLUMNS]
 [--max-width <integer>] [--fit-width]
 [--print-empty]
 [--quote {all,minimal,none,nonnumeric}]
 [--noindent] [--sort-column SORT_COLUMN]
 [lockfile [lockfile ...]]

Search curseforge for newer/updated versions of addons.

positional arguments:
 lockfile modpack lock file

optional arguments:
 -h, --help show this help message and exit

output formatter:
 output formatter options

 -f {csv,json,table,value,yaml}, --format {csv,json,table,value,yaml}
 the output format, defaults to table
 -c COLUMNS, --column COLUMNS
 specify the column(s) to include, can be repeated
 --sort-column SORT_COLUMN
 specify the column(s) to sort the data (columns
 specified first have a priority, non-existing columns
 are ignored), can be repeated

Table formatter:
 --max-width <integer>
 maximum display width, <1 to disable. You cal also use
 the MAX_DISPLAY_WIDTH environment variable, but the
 parameter takes precedence.
 --fit-width Fit the table to the display width. Implied if --max-
 width greater than 0. Set the environment variable
 FIT_WIDTH=1 to always enable
 --print-empty Print empty table iof there is no data to show.

CSV formatter:
 --quote {all,minimal,none,nonnumeric}
 when to include quotes, default to nonnumeric

json formatter:
 --noindent whether to disable indenting the JSON

Describe cmd here

Optional command flags:

info

packmaker info [-h] [-f {json,shell,table,value,yaml}] [-c COLUMNS]
 [--max-width <integer>] [--fit-width] [--print-empty]
 [--noindent] [--prefix PREFIX]
 [lockfile [lockfile ...]]

Display information about the modpack.

positional arguments:
 lockfile modpack lock file

optional arguments:
 -h, --help show this help message and exit

output formatter:
 output formatter options

 -f {json,shell,table,value,yaml}, --format {json,shell,table,value,yaml}
 the output format, defaults to table
 -c COLUMNS, --column COLUMNS
 specify the column(s) to include, can be repeated

Table formatter:
 --max-width <integer>
 maximum display width, <1 to disable. You cal also use
 the MAX_DISPLAY_WIDTH environment variable, but the
 parameter takes precedence.
 --fit-width Fit the table to the display width. Implied if --max-
 width greater than 0. Set the environment variable
 FIT_WIDTH=1 to always enable
 --print-empty Print empty table iof there is no data to show.

json formatter:
 --noindent whether to disable indenting the JSON

shell formatter:
 a format a UNIX shell can parse (variable="value")

 --prefix PREFIX add a prefix to all variable names

Describe cmd here

Optional command flags:

launch

packmaker launch [-h] [--build-dir BUILD_DIR]
 [--release-dir RELEASE_DIR] [--cache-dir CACHE_DIR]
 [--release-format {zip,tgz}]
 [lockfile [lockfile ...]]

Launch a local installation

positional arguments:
 lockfile modpack lock file

optional arguments:
 -h, --help show this help message and exit
 --build-dir BUILD_DIR, -b BUILD_DIR
 base directory for build artifacts
 --release-dir RELEASE_DIR, -r RELEASE_DIR
 base directory for release artifacts
 --cache-dir CACHE_DIR
 base directory for cached artifacts
 --release-format {zip,tgz}
 archive format for release package

Describe cmd here

Optional command flags:

lock

packmaker lock [-h] [--strict] [--no-strict] [packdef [packdef ...]]

Lock the modpack. Find mod download urls, generate a packmaker.lock file.

positional arguments:
 packdef modpack definition file

optional arguments:
 -h, --help show this help message and exit
 --strict enforce strict minecraft version matching
 --no-strict do not enforce strict minecraft version matching [default]

Describe cmd here

Optional command flags:

modsinfo

packmaker modsinfo [-h] [-f {csv,json,table,value,yaml}] [-c COLUMNS]
 [--max-width <integer>] [--fit-width]
 [--print-empty]
 [--quote {all,minimal,none,nonnumeric}] [--noindent]
 [--sort-column SORT_COLUMN]
 [lockfile [lockfile ...]]

Display information about the mods in the modpack.

positional arguments:
 lockfile modpack lock file

optional arguments:
 -h, --help show this help message and exit

output formatter:
 output formatter options

 -f {csv,json,table,value,yaml}, --format {csv,json,table,value,yaml}
 the output format, defaults to table
 -c COLUMNS, --column COLUMNS
 specify the column(s) to include, can be repeated
 --sort-column SORT_COLUMN
 specify the column(s) to sort the data (columns
 specified first have a priority, non-existing columns
 are ignored), can be repeated

Table formatter:
 --max-width <integer>
 maximum display width, <1 to disable. You cal also use
 the MAX_DISPLAY_WIDTH environment variable, but the
 parameter takes precedence.
 --fit-width Fit the table to the display width. Implied if --max-
 width greater than 0. Set the environment variable
 FIT_WIDTH=1 to always enable
 --print-empty Print empty table iof there is no data to show.

CSV formatter:
 --quote {all,minimal,none,nonnumeric}
 when to include quotes, default to nonnumeric

json formatter:
 --noindent whether to disable indenting the JSON

resourcepacksinfo

packmaker resourcepacksinfo [-h] [-f {csv,json,table,value,yaml}]
 [-c COLUMNS]
 [--max-width <integer>]
 [--fit-width]
 [--print-empty]
 [--quote {all,minimal,none,nonnumeric}]
 [--noindent]
 [--sort-column SORT_COLUMN]
 [lockfile [lockfile ...]]

Display information about the resourcepacks in the modpack.

positional arguments:
 lockfile modpack lock file

optional arguments:
 -h, --help show this help message and exit

output formatter:
 output formatter options

 -f {csv,json,table,value,yaml}, --format {csv,json,table,value,yaml}
 the output format, defaults to table
 -c COLUMNS, --column COLUMNS
 specify the column(s) to include, can be repeated
 --sort-column SORT_COLUMN
 specify the column(s) to sort the data (columns specified first have a priority, non-existing columns are ignored), can be repeated

Table formatter:
 --max-width <integer>
 maximum display width, <1 to disable. You cal also use the MAX_DISPLAY_WIDTH environment variable, but the parameter takes precedence.
 --fit-width Fit the table to the display width. Implied if --max-width greater than 0. Set the environment variable FIT_WIDTH=1 to always enable
 --print-empty Print empty table iof there is no data to show.

CSV formatter:
 --quote {all,minimal,none,nonnumeric}
 when to include quotes, default to nonnumeric

json formatter:
 --noindent whether to disable indenting the JSON

Describe cmd here

Optional command flags:

search

packmaker search [-h] [-f {csv,json,table,value,yaml}] [-c COLUMNS]
 [--max-width <integer>] [--fit-width] [--print-empty]
 [--quote {all,minimal,none,nonnumeric}] [--noindent]
 [--sort-column SORT_COLUMN]
 searchstring [searchstring ...]

Search curseforge for mods.

positional arguments:
 searchstring search string

optional arguments:
 -h, --help show this help message and exit

output formatter:
 output formatter options

 -f {csv,json,table,value,yaml}, --format {csv,json,table,value,yaml}
 the output format, defaults to table
 -c COLUMNS, --column COLUMNS
 specify the column(s) to include, can be repeated
 --sort-column SORT_COLUMN
 specify the column(s) to sort the data (columns
 specified first have a priority, non-existing columns
 are ignored), can be repeated

Table formatter:
 --max-width <integer>
 maximum display width, <1 to disable. You cal also use
 the MAX_DISPLAY_WIDTH environment variable, but the
 parameter takes precedence.
 --fit-width Fit the table to the display width. Implied if --max-
 width greater than 0. Set the environment variable
 FIT_WIDTH=1 to always enable
 --print-empty Print empty table iof there is no data to show.

CSV formatter:
 --quote {all,minimal,none,nonnumeric}
 when to include quotes, default to nonnumeric

json formatter:
 --noindent whether to disable indenting the JSON

Describe cmd here

Optional command flags:

updatedb

packmaker updatedb [-h] [--ignore-mods] [--ignore-resourcepacks]

Download and compile a new mods database from curseforge.

optional arguments:
 -h, --help show this help message and exit
 --ignore-mods Do not scan for mods when updating the curseforge db
 --ignore-resourcepacks
 Do not scan for resourcepacks when updating the curseforge db

Describe cmd here

Optional command flags:

help

packmaker help [-h] cmd

Print detailed help for another command

positional arguments:
 cmd name of the command

optional arguments:
 -h, --help show this help message and exit

Describe cmd here

Optional command flags:

Global Flags

Packmaker has a few “global” flags that affect all commands. These must appear
between the executable name (packmaker) and the command—for example, packmaker -v
search

Configuration

Packmaker has a simple configuration file that lets you contrl and customize its operation.
To configure packmaker, you create a file called packmaker.conf. The location of this file
depends on your platform:

	On Linux and other Unix-like Oses, packmaker looks for ~/.config/packmaker.conf.

	On Windows, packmaker uses %APPDATA%\packmaker.conf. This is usually a folder
like C:\Users\You\AppData\Roaming.

	On Mac OS X, you can use either the unix location or ~/Library/Application Support/config.yml

It possible to customize the location of the configuration file. See the Configuration Location,
below.

The config file uses a common INI syntax, with sections of the configuration delimited by
[section] headers, and simple key = value parameters in each section.

You can include comments in the configuration file. Comments start with a # (hash), and
packmaker will ignore the comment until the end of the line.

You can also include environment variables in the values for most options, using the
${VARIABLE} syntax. Packmaker will attempt to resolve these definitions for the
environment.

The rest of this page enumerates all of the configuration options available.

Curseforge options

This section of the configuration controls how the Curseforge api is accessed and cached.

authentication_token

The curseforge api authentication token. This token is required to allow packmaker access
to the api. Most api calls will fail without it, so packmaker will simply refuse to run
most commands if it is not defined.

You can obtain an authentication token with a curseforge.com [https://docs.curseforge.com/] account, using their
Curseforge Console [https://console.curseforge.com/#/api-keys] site.

ignore_mods

A boolean value, when true tells packmaker to not include any mods when it is generating
the local moddb file, using the updatedb command. This is an optimization if you know
you will not be dealing with mods in your modpack, and will speed up the updatedb operation.

This is optional, and defaults to false when not defined. Mods will be included.

ignore_resourcepacks

A boolean value, when true tells packmaker to not include any resourcepacks when it is generating
the local moddb file, using the updatedb command. This is an optimization if you know
you will not be dealing with resourcepacks in your modpack, and will speed up the updatedb
operation.

This is optional, and defaults to false when not defined. Resourcepacks will be included.

moddb_filename

The location and filename of the local cache of api information about mods and resourcepacks
from curseforge. Packmaker uses this ‘moddb’ as a way to speed up many api calls, looking
up addon information from this file rather than calling curseforge. The updatedb command is
used to generate and maintain this file.

This file is optional. If you do not define it packmaker will still work, but it will be forced
to make many more curseforge api calls which can significantly slow down its operation.

HINT: If you specify a common location for this file, it can be reused for mulitple packs.
For example: moddb_filename = ${HOME}/packmaker/addons.db.

Launch options

This section specifies parameters related to Java. You can control specifically how java
is called when launching minecraft using the launch command, and when building minecraft
servers.

java_arguments

The java command line arguments to use when launching Minecraft. If you have unique
java requirements, you specify them here.

This is optional, and defaults to the following set of java arguments when not defined:

-XX:+UseG1GC -XX:+UnlockExperimentalVMOptions
+XX:G1NewSizePercent=20 +XX:G1ReservePercent=20
-XX:MaxGCPauseMillis=50 -XX:G1HeapRegionSize=32M
-Dsun.rmi.dgc.server.gcInterval=2147483646
-Dfml.readTimeout=180

java_binary

The location of the actual Java executable to use when launching Minecraft. If java is not
on your PATH, or you need to use the non-default version of java, you can specify it here.

This is optional, and defaults to just java when not defined.

java_memory

How much memory to assign to the java heap space when launching Minecraft. This game, especially
when modded, needs more memory to run than allocated by default by java itself.

This is optional, and default to 4096 megabytes (4 gigabytes) when not defined.

Locations options

This section defines the locations, folders or directories, that packmaker will use when building
your modpack.

build

This is the root location of all build artifacts, although some can be changed using the location
configuratios below.

This is optional, and defaults to a directory named build in the current working directory.

Note that if not otherwise defined, both the cache and release locations are configured as subdirectories
of the build location.

cache

This location of files downloaded during the build command. Minecraft files, Java libraries, mods and
resourcepacks are all downloaded to this cache location first, before being copied into their final
location for the modpack.

This is for optimization, to reduce multiple downloads of the sames file for subsequent builds. When
packmaker needs to download a file, it will first check this cache location, and use the cached file
rather than downloading another copy. This greatly speeds up modpack building.

This is optional, and default to a directory named cache under the build location.

HINT: you can share this cache location between multiple modpacks if you defined it to be in a common
location. Then you will only ever download a version of minecraft once, and reuse it for every modpack.
For example: cache = ${HOME}/packmaker/cache.

release

The location of the final release artifacts built by packmaker. After a build command is completed you
will be able to find the zip file for your modpack in this location.

This is optional, and defaults to a directory named release under the build location.

Configuration Locations

Packmaker uses a specific search order to find its configuration file on the filesystem. This search
order is dependent on the platform it is running on.

Linux or Unix-like systems

On Linux and Unix, packmaker will look in the following locations for its configuration file, in this
order, using the first one it finds.

	./packmaker.conf

	${XDG_CONFIG_HOME}/packmaker.conf, if the XDG_CONFIG_HOME environment variable is defined

	~/.config/packmaker.conf

	/usr/local/etc/packmaker.conf

	/etc/packmaker.conf

Windows

On Windows, packmaker will lock in the following locations for its configuration file, in this order,
using the first one it finds.

	.\packmaker.conf

	~\AppData\Roaming\packmaker.conf

	%APPDATA%\packmaker.conf, if the APPDATA environment variable is defined

Mac OS X

On Mac OS X, packmaker will look in the following locations for its configuration file, in this order,
using the first one it finds.

	./packmaker.conf

	${XDG_CONFIG_HOME}/packmaker.conf, if the XDG_CONFIG_HOME environment variable is defined

	~/.config/packmaker.conf

	~/Library/Application Support/packmaker.conf

	/usr/local/etc/packmaker.conf

	/etc/packmaker.conf

Example

Here is an example configuration file, with all options defined:

packmaker.conf

[curseforge]
authentication_token = xxxxxxxxxxxxxxxxxxxxxxx
ignore_mods = false
ignore_resourcepacks = false
moddb_filename = ${HOME}/.local/share/packmaker/curseforge.db

[launch]
java_arguments = -XX:+UseG1GC -XX:UseSSE=3
java_binary = /usr/lib/jvm/java-8-openjdk-amd64/bin/java
java_memory = 8192m

[locations]
build = ./build
cache = ${HOME}/.local/share/packmaker/cache
release = ./release

FAQ

Here are some answers to frequently-asked questions from IRC and elsewhere.
Got a question that isn’t answered here? Try the discord server [https://discord.server.here], or
filing an issue in the bug tracker.

	How do I…

	Why does packmaker…

How do I…

tbd…

Why does packmaker…

tbd…

Index

 _static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Packmaker

 		
 Guides

 		
 Getting Started

 		
 Installing

 		
 Configuring

 		
 CurseforgeDB

 		
 The Example Modpack

 		
 Reference

 		
 Packmaker Definition Files

 		
 Introduction

 		
 Metadata

 		
 Release Types

 		
 Mod Definitions

 		
 Resourcepack Definitions

 		
 Files

 		
 Routhio

 		
 Command-Line Interface

 		
 Commands

 		
 Global Flags

 		
 Configuration

 		
 Curseforge options

 		
 Launch options

 		
 Locations options

 		
 Configuration Locations

 		
 Example

 		
 FAQ

 		
 How do I…

 		
 Why does packmaker…

_static/ajax-loader.gif

